skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barra, Joaquin Moris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Inundation from storms like Hurricanes Katrina and Sandy, and the 2011 East Japan tsunami, have caused catastrophic damage to coastal communities. Prediction of surge, wave, and tsunami flow transformation over the built and natural environment is essential in determining survival and failure of near-coast structures. However, unlike earthquake and wind hazards, overland flow event loading and damage often vary strongly at a parcel scale in built-up coastal regions due to the influence of nearby structures and vegetation on hydrodynamic transformation. Additionally, overland flow hydrodynamics and loading are presently treated using a variety of simplified methods (e.g. bare earth method) which introduce significant uncertainty and/or bias. This study describes an extensive series of large-scale experiments to create a comprehensive dataset of detailed hydrodynamics and forces on an array of coastal structures (representing buildings of a community on a barrier island) subject to the variability of storm waves, surge, and tsunami, incorporating the effect of overland flow, 3D flow alteration due to near-structure shielding, vegetation, waterborne debris, and building damage.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/EDLiEK6b64E 
    more » « less